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Model

The paper considers a nonparametric Bayesian model for conditional densities

•We consider the space of conditional distributions

F = {f : Y × X → (0,∞)− Borel measurable,
∫
f (y|x)dy = 1 ∀x ∈ X}

and we are interested in estimating nonparametrically f0 ∈ F .

• The model for conditional densities is based on an orthogonal series expansion with a prior on the
coefficients and on the number of terms in the expansion,

f (y|x,a,m) =

(∑
j:||j||∞=m ajPj(y, x)

)2

∫ (∑
j:||j||∞=m ajPj(y, x)

)2
dy

where j = (j1, . . . , jd) indicates the degrees of the dimensions considered and Pj(y, x) is a multi-
variate orthogonal polynomial

• The structure allows to naturally consider cross dimensional moves

•Orthogonality should imply stability of existing parameters when changing the number of compo-
nents

• This model allows to analytically calculate the conditional distribution

• The series expansion is squared in order to ensure non-negativity

Literature Review

We refer to two main models: B-spline (Shen and Ghosal, 2016) and mixture of experts (Norets and
Pati, 2017). We hope to improve on both:

• B-spline→ fix a priori an upperbound on smoothness and interdependent when changing number
of nodes

– Orthogonal polynomials do not vary according to the level of smoothness

•Mixture of experts→ difficult to simulate from posterior for variable number of experts, which is
required for optimal posterior contraction rate

– Orthogonality of polynomials should imply more stable parameters→ higher acceptance rate

Assumptions

We assume a prior on m and a such that for some b1, b2, b3 > 0 and 0 ≤ t2 ≤ t1 ≤ 1

Π (‖a− a0‖2 ≤ ε) ≥ exp {−b1J log(1/ε)}

and that
Π(m) ∈

[
exp
{
−b2m logt1m

}
, exp

{
−b3m logt2m

}]
We also assume ∑∞

j=0 a0jPj(y, x)∑
j:||j||∞=m ajPj(y, x)

to be bounded away from zero and infinity.
Finally, we assume that the approximation error is such that

∞∑
j=m+1

a2
0j . m−2β/d

Convergence of Posterior

Under the assumptions above and following Shen and Ghosal (2015) we have that the posterior con-
traction rate is

εn = n
− β/d

2β/d+1(log n)
β/d

2β/d+1

MCMC: Cross-dimensional Move

•We allow for a flexible number of terms→ RJMCMC in which we add or delete one polynomial
term at a time

•An optimal RJMCMC proposal distribution for the coefficient of the new polynomial term is the
conditional posterior distribution of this coefficient (Norets, 2018)

• The conditional posterior can only be computed up to a normalization constant; hence, we ap-
proximate the conditional posterior with a piecewise exponential function on a grid, for which the
normalization constant is available in closed form and simulation from which is straightforward

– The method is similar to Adaptive Rejection Sampling (Gilks, 1992)

MCMC: Within-dimension

• In application we use complete polynomials (Judd and Gaspar, 1997), rather than tensor products,
to reduce the curse of dimensionality

• Large number of dimensions can make the posterior difficult to explore. We therefore use Hamil-
tonian Monte Carlo

– No proposal function is needed, only log-posterior and gradient

Simulations
•We simulate observations from

yi =
sin (πxi) + εi

2

where xi and εi are i.i.d random variables with density 1− |z| on [−1, 1]

•We assume N(0, 1) as prior on the coefficients

•We fix the first coefficient to 0.5 since our model is identified up to a multiplicative constant

•We calculate the Mean Absolute Error

MAE =

∑Ny

i=1

∑Nx
j=1

∣∣∣f̂ (yi|xj)− f0
(
yi|xj

)∣∣∣
NyNx

Numerical Results
•We start by analyzing performance for a fixed maximum polynomial degree

MAE m = 5 m = 10 m = 15 m = 20

n = 500 0.2484 0.1018 0.1957 0.3384
n = 1000 0.2061 0.0748 0.1283 0.2287
n = 2000 0.1939 0.0538 0.0656 0.1194

Figure 1: Simulations for n = 1000 and m = 5, 10, 15

•We now allow the degree to vary choosing at random from some precomputed polynomials

Figure 2: Simulations for n = 1000 and n = 5000

Future Work
• Complete vs tensor product polynomials

•Other families of orthogonal polynomials

• Relax boundedness away from zero assumption

•More extensive simulation experiments and applications
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