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Model

The paper considers a nonparametric Bayesian model for conditional densities

e We consider the space of conditional distributions
F={f:YxX — (0,00) — Borel measurable,/f(y|x)dy =1 Vere X}

and we are interested in estimating nonparametrically fy € F.

e The model for conditional densities 1s based on an orthogonal series expansion with a prior on the
coefficients and on the number of terms 1n the expansion,
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where j = (j1,...,Jq) indicates the degrees of the dimensions considered and P;(y, z) is a multi-
variate orthogonal polynomial

e The structure allows to naturally consider cross dimensional moves

e Orthogonality should imply stability of existing parameters when changing the number of compo-
nents

e This model allows to analytically calculate the conditional distribution

e The series expansion is squared in order to ensure non-negativity

Literature Review

We refer to two main models: B-spline (Shen and Ghosal, 2016) and mixture of experts (Norets and
Pati, 2017). We hope to improve on both:

e B-spline — fix a priori an upperbound on smoothness and interdependent when changing number
of nodes

— Orthogonal polynomials do not vary according to the level of smoothness

e Mixture of experts — difficult to sitmulate from posterior for variable number of experts, which is
required for optimal posterior contraction rate

— Orthogonality of polynomials should imply more stable parameters — higher acceptance rate

Assumptions

We assume a prior on m and a such that for some b1,b9,03 > 0and 0 <ty <t; <1
11 (la — aplly < €) > exp {—byJ log(1/e)}

and that
[I(m) € {exp {—bgm logt m} , eXP {—bgm log" mH
We also assume
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to be bounded away from zero and infinity.
Finally, we assume that the approximation error is such that

Convergence of Posterior

Under the assumptions above and following Shen and Ghosal (2015) we have that the posterior con-
traction rate 1s
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MCMC: Cross-dimensional Move

e We allow for a flexible number of terms — RJIMCMC in which we add or delete one polynomial
term at a time

e An optimal RIMCMC proposal distribution for the coefficient of the new polynomial term 1s the
conditional posterior distribution of this coefficient (Norets, 2018)

e The conditional posterior can only be computed up to a normalization constant; hence, we ap-
proximate the conditional posterior with a piecewise exponential function on a grid, for which the
normalization constant 1s available in closed form and simulation from which is straightforward

— The method is similar to Adaptive Rejection Sampling (Gilks, 1992)

MCMC: Within-dimension

e In application we use complete polynomials (Judd and Gaspar, 1997), rather than tensor products,
to reduce the curse of dimensionality

e [arge number of dimensions can make the posterior difficult to explore. We therefore use Hamil-
tonian Monte Carlo

— No proposal function 1s needed, only log-posterior and gradient

Simulations

e We simulate observations from .
sin (7wx;) + €;
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where z; and ¢; are 7.7.d random variables with density 1 — |z| on [—1, 1]

Yi =

e We assume N (0, 1) as prior on the coefficients
e We fix the first coefficient to 0.5 since our model is identified up to a multiplicative constant

e We calculate the Mean Absolute Error
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Numerical Results

e We start by analyzing performance for a fixed maximum polynomial degree

MAE m=5m=100m =15 m =20
n = 500 0.2484| 0.1018 | 0.1957 | 0.3384
n = 1000 0.2061| 0.0748 | 0.1283 | 0.2287
n = 2000 0.1939| 0.0538 | 0.0656 | 0.1194
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e We now allow the degree to vary choosing at random from some precomputed polynomials
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Figure 1: Simulations for n = 1000 and m = 5, 10, 15
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Figure 2: Simulations for n = 1000 and n = 5000

e Complete vs tensor product polynomials

e Other families of orthogonal polynomials

e Relax boundedness away from zero assumption

e More extensive simulation experiments and applications
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